

Delegated and Chained Authorization with OAuth2 and UMA
 Javed Shah

ForgeRock, javed.shah@forgerock.com,+1925679570, 655 Glen Mady Way, Folsom, CA 95630, USA

ABSTRACT
This paper presents an authorization framework for solving
chained authorization and delegated authorization problems
in HTTP/JSON based distributed authorization
architectures. This new framework combines the use of
OAuth2 token exchange and the UMA 2.0 Grant flow to
enable authorized permission-cascading for end users
within the bounds of least privilege. At the end also outlined
is future work that needs to be undertaken to improve the
effectiveness and adoption of the framework.

CCS CONCEPTS
• Security and privacy → Authentication, Authorization

KEYWORDS
access control, authorization, token exchange

1 INTRODUCTION
Companies leading digital transformation projects often
have a need to setup authorization policies that are used to
enforce access decisions in APIs called on behalf of the end
user. Such a system of access enablement requires a
complex model to support the creation and management of
permissions for protected resources, scopes associated
with the resources and various applicable resource-use
constraints. It thus becomes necessary to decouple
permissions from resource objects and users, and
dynamically apply constraints to the scoped use of those
resources to authorized users, or agents acting on behalf of
those users. A resource’s scope is a bounded context of
access that is possible to be performed on it, in a sense it is
a verb that could be applied to the resource. Besides the
need to model the system of users, permissions, roles,
resources and constraints, there is also a need to model the
dependency of applications on one another, including but
not limited to the concept of nested permissions that allows
cascading grants to end users based on the initial role
assignment. This is termed chained authorization in this
paper.

Nowadays, it is considered mission critical to facilitate user
consent acquisition and propagation in downstream access
decisions. Delegated authorization in this paper refers to the
act of letting interim clients holding the end user’s

authorization token become agents of the end user and act
on her behalf when requesting access to downstream
resources.

2 AUTHORIZATION FRAMEWORK
Administrators need to be able to organize application
permissions and resource-use constraints into manageable
profiles that can be grouped together as roles according to
business requirements. To facilitate management of large
number of such profiles, permissions, resource objects and
constraints it is a best practice to allow applications to
dynamically register new resources, with the Authorization
server. Application (or resource) owners must also be able
to create and manage permissions and constraints that
affect the registered set of resources.

2.1 User Managed Access 2.0
UMA 2.0 [1] is a generalized framework designed as an
extension to OAuth 2.0 [2] allowing resource owners such
fine-grained control over protected resources, accessed by
clients used by arbitrary requesting parties, where the
resources reside on any number of resource servers, and
where a centralized authorization server governs access
based on resource owner policies. A generalized framework
for enabling distributed authorization UMA 2.0 is presented
in Figure 1.

Figure 1: UMA 2.0 Authorization Overview
The UMA 2.0 process largely involves the UMA 2.0 Grant
flow, in which a requesting party obtains a RPT to access

1

mailto:javed.shah@forgerock.com

SIN’2018, Sept. 2018, Cardiff, UK Shah

the resource, and resource registration which can occur at
various stages through the UMA process by the resource
owner. The sequence diagram in Figure 2 outlines a
successful registration of a protected resource followed by a
request for said resource. According to the UMA 2.0
specification, and as also indicated in Figure 1, the RO
authorizes protected resource access to clients used by
entities that are in a RqP role. This enables party-to-party
authorization which is more powerful than the authorization
of application access alone. While it is more powerful, it is
also more complicated and introduces the notion of
Permission Ticket, which is a correlation handle binding
requested permissions and passed all around- initially
between RS and Client, presented by Client at the AS’s
token endpoint and during RqP redirects.

2.2 OAuth2 Token Exchange
There is overhead in this token-heavy architecture but is
often a necessary evil to ensure secure
consent-management and resource sharing between
parties. The authorization server and resource server
interact with the Client and RqP asynchronously without the
RO involved. This lets the RO configure policies at the AS
at will, rather than authorizing access token issuance
synchronously just after authenticating, which is the
traditional OAuth2 authorization grant flow. While this paper
does not claim to resolve the security implications of new
UMA tokens flowing over the wire, it does attempt to
present chained and delegation authorization frameworks
that do not rely on a second-level UMA interaction, but
instead fall back on a relatively young OAuth2 draft
specification: Token Exchange [3].

The OAuth2 Token Exchange draft specification improves
upon the conventional OAuth2 flow of exchanging Resource
Owner’s authorization for an access token by adding a
framework for security token exchange. It is important to
discuss the semantics of impersonation here. When
Requesting Party (client) RqP-A impersonates Trader B,
RqP-A is given all the permissions that Trader B has within
the scope of that authorization request, and is therefore
indistinguishable from Trader B in that context. Thus, when
RqP-A impersonates Trader B, then in so far as any entity
receiving such a token is concerned, they are actually
dealing with Trader B. When RqP-A is impersonating Trader
B, RqP-A is Trader B.

2 PERMISSION DESIGN
Here is presented, the design of a permission model that is
opaque to the client and decouples resources, constraints,
policies and scopes allowing the application owner to create

a fine-grained authorization model. Another design goal is
to allow chained authorization whererin grant of access to
service A automatically grants access to service B. In other
words, grant of permission X on Resource A also grants
permission Y on Resource B provided certain conditions are
met. In the traditional model of RBAC, policy configurators
would attach roles to users and enforce coarse-grained
access to resources based on those implicit associations.

Figure 2: UMA 2.0 Grant Flow

In the distribution authorization model, finer-grained
access control can be achieved with loose coupling
between the accesses available on a resource, such as
scopes, and the actual business logic of establishing a
given user’s permission to use those scopes in real time.
This deliberate decoupling of the ‘permission object’ from
the policies used for enforcing access to the resource
makes nested permission design possible. I shall present a
few examples for illustrative purposes.

A permission is of the form ‘A can do B on resource C’,
where A represents one or more actors- users, roles and
groups, or a combination thereof. B represents the verb- an
action to be performed, and C represents the protected
resource. For example, we define a top-level permission,
namely BOOK-DEAL-PERM: ‘TRADER can do VIEW on
resource MARKET-BOOK’. A nested permission can be of
the form ‘X can do Y on resource Z because X has
permission P’. As an example, we define a nested

2

Delegated and Chained Authorization with OAuth2 and UMA SIN’2018, Sept. 2018, Cardiff, UK

permission, namely MARKET-DATA-DEP-PERM: ‘TRADER
can do VIEW on resource SGX-DELAYED-FUT because
TRADER has permission BOOK-DEAL-PERM’. This
translates to a TRADER having VIEW access on delayed
SGX Futures data because the TRADER also has VIEW
access to the MARKET-BOOK. Permissions can also add
resource-use constraints as shown in Table 1 below but
most significantly allow a cascade of access as denoted
below using the RELAY control.

Table 1: Permission Structure for Dependency

Resource Constraint Scopes Dependency

1 /mkt-book MAX:$2M VIEW RELAY #2

2 /sgx-del-fut 6 months VIEW -

The permission dependency structure with liaison to

policies and decision strategy resolution as shown in Figure
3, allows the cascade of accesses to the holder as deemed
appropriate at runtime by policy.
Next is presented a model for indicating delegation
semantics inside permissions. Normally, a permission binds
resources and scopes to policies for evaluating if the access
should be granted and if so, subservient to which
constraints. However, there are cases where the evaluated
permission grant is positive, or allowed, but only when using
a delegate to access the resource. The nature of these use
cases will become clear in the section on Delegated
Authorization.

Table 2: Permission Structure for Delegation

Resource Constraint Scopes Delegation

1 /mkt-book MAX:$2M VIEW -

2 /sgx-del-fut 6 months VIEW dtnadmin

A decision strategy is used to resolve conflicting access
decisions from the aggregated policies- this could occur
both within a permission or within a role as a sum of the
outcomes of all permission evaluations. Possible decision
strategies are:
- UNION: the number of ALLOW decisions must be greater
in number than the number of DENY decisions
- AND: even a single DENY decision will deny access
- OR: even a single ALLOW decision will permit access.

A role represents all possible permissions that should be
evaluated to grant access to various resources. If any of the
permissions have nested permissions then those also will
be evaluated.

Figure 3: Roles as aggregated top-level permissions

3 CHAINED AUTHORIZATION
Chaining the authorization based on least privilege is a
common use case that is sometimes attempted with lesser
models such as adding all user claims in the access token.
Over time, adding attribute-based claims results in bloated
JWTs, higher cost of performing authorization decisions and
violates the principle of least privilege.

Chaining the permission grant can be achieved at the time
of authorization by adding the RELAY instruction in the
parent permission. If the permissions granted to Trader B
contain a RELAY to another nested permission then those
also will be added to the Requesting Party Token but only
conditionally. The condition being that a request must have
been made to the protected resource protected by the
nested permission, in keeping with the principle of least
privilege. The sequence diagram in Figure 4 describes the
flow. For simplicity we pick up where Figure 2 left off, ie.,
when the /mkt-book data has been successfully delivered to
the client.

3

SIN’2018, Sept. 2018, Cardiff, UK Shah

Figure 4: Chained authorization with OAuth2 Token
Exchange

There is a new actor at play in the flow: a microservice that
implements draft 13 of the OAuth2 Token Exchange
specification. The UMA RS acts as a client during the token
exchange in order to trade the RPT with a new token that is
appropriate to include in a call to the /sgx-del-fut API. The
new token is an access token that is more narrowly scoped
for the downstream SGX Delayed Futures API and only
contains the nested permissions necessary to invoke the
API. The Token Exchange microservices is also able to
encrypt the granted permissions, as a set of scopes on the
resource, per resource server. This provides additional
security-by-configuration for the newly minted access token
after the token exchange transaction is completed. It should
be noted that there is no redirect or direct HTTP request to
the UMA AS for obtaining an authorization decision, which
is standard procedure for UMA 2.0 grant flow. The proposed
model allows for the authorization evaluation to be handled
locally at the µTokenXch microservice. There is no redirect
or HTTP request needed to the AS even if there is more
than one AS in the scenario, because of the idea of caching
the nested permissions and policies at the token exchange
microservice. Any arbitrary AS should be able to enable
notification to the token exchange microservice on policy
changes.

4 DELEGATED AUTHORIZATION
In the previous section, Alice the trader had a subscription
to DTNFeed, the application that provided a delayed feed of
the SGX Futures. Therefore it was deemed okay for the
UMA RS to impersonate Alice. This was done by
exchanging the RPT for a new access token which
represents an authorization grant from Alice’s nested
permission evaluation by the Token Exchange microservice.

But there are also use cases where the downstream API
requires a service identity as current actor, but also must
track user identity for audit purposes, as an example.
Delegation is expressed in an access token by including the
‘sub’ and other claims about the primary subject of the
access token as well as the actor to whom that subject has
delegated some of its rights in a special ‘act’ claim.

Detection of credit card fraud by a Helpdesk or other
system operation follows this paradigm. The operator must
immediately cancel the transaction using a Third Party API
that requires a service-identity, a service-level privilege, to
invoke but also requires the credit card holder’s principal
information and claims to validate the request. In the
context of trading systems, the Trade Desk Manager must
assign report execution rights selectively to traders in the
business unit. While the Report API requires a service level
identity, it also requires claims for the authenticated
principal to be passed in to validate depth and extent of
runnable and viewable reports. Further, it is quite likely that
a chain of delegation actors be required to be built as
service invocations result in service A calling service B,
service C, and so on, with each service requiring proof of all
prior chained authorizations.

The OAuth2 draft token exchange provides delegation
semantics and a framework for expressing delegation in
JWT tokens. The delegated authorization framework
presented in this section requires decoration of the RPT
access token issued during the UMA 2.0 Grant flow
described earlier with a special "may_act" JSON object
claim. This claim-set contains a ‘sub’ claim identifying the
party that is being asserted as being eligible to act for the
party identified by the JWT containing the “may_act” claim.

The combination of the two claims "iss" and "sub" are
sometimes necessary to uniquely identify an authorized
actor, while the "email" claim might be used to provide
additional useful information about that party. An example is
presented that illustrates the "may_act" claim within a JWT
Claims Set. The claims of the token itself are about
alice@broker.com while the "may_act" claim indicates that
dtnadmin@dtnfeed.com is authorized to act on behalf of
alice@broker.com. An example is shown:

4

mailto:alice@broker.com

Delegated and Chained Authorization with OAuth2 and UMA SIN’2018, Sept. 2018, Cardiff, UK

 {
 "aud":"https://dtnasia.dtnfeed.com",
 "iss":"https://issuer.broker.com",
 "exp":1443904177,
 "nbf":1443904077,
 "sub":"alice@broker.com",
 "may_act":
 {
 "sub":"dtnadmin@dtnfeed.com"
 }
 }

The decoration of the RPT is relatively easy to do within
the AS using conditional claims scripting and most OAuth2
Authorization Servers do provide this capability. The only
additional requirement is that the UMA RS must be in
possession of the actor’s access token, either an OAuth2
token or an RPT obtained using the UMA 2.0 grant flow.
The sequence diagram in Figure 5 illustrates the delegated
authorization flow using UMA 2.0 and OAuth2 Token
Exchange. There is again, no redirect or HTTP request
necessary from the UMA RS to the UMA AS, or the token
exchange microservice.

Figure 5: Delegated authorization with OAuth2 Token
Exchange

5  SECURITY CONSIDERATIONS
5.1 UMA permission ticket
UMA 1.0 introduced the permission ticket, PT, and UMA 2.0
retains it. The PT introduces a security vulnerability in that
when a client redirects an RqP to the claims interaction
endpoint on the UMA AS highlighted below in Figure 6, the
client provides no discernible context to the UMA AS about
which user is appearing at the endpoint, other than implicitly
through the permission ticket. A malicious client can
therefore impersonate the end-user after the redirect
completes and before it returns to the token endpoint at the
AS to seek permissions.

Figure 6: Snippet from the UMA 2.0 Grant flow

5.2 claim_token
The chained and delegated authorization flows presented
here do not use the claim_token parameter in the UMA 2.0
grant flow which is susceptible to overloading with claims,
especially when untrusted or fraudulent clients attempt to
satisfy policies using claim tokens.

5

SIN’2018, Sept. 2018, Cardiff, UK Shah

6  PERFORMANCE CONSIDERATIONS

The framework presented here requires a notification
mechanism from the AS to the Token Exchange
microservice to refresh the nested permission sets
applicable to the resources the Token Exchange
microservices is charged with protecting. In this way any
CRUD activities on the nested permissions stored in the AS
can be synchronized dynamically to downstream Token
Exchange microservices. This is an improvement to existing
JSON and HTTP based distributed authorization
frameworks that require redirects to the AS for all chained
authorization decisions. One way industry practitioners
solve this is by adding all known claims about the end user
to the JWT, which compromises security by violating the
least privilege principle. One other undesirable way this use
case is solved in the industry is by using custom business
logic built into the RS to detect “flagged” APIs that require
additional “permission handling” voiding the decoupling
principle necessary for a scalable distributed architecture. In
the system described here, when using OAuth2 token
exchange with cached nested permissions- or policies
attached to those permissions- no calls to the Authorization
Server are necessary.

7  FUTURE WORK
Planned work involves framework definition, experiential
data collection and results publication. The work is
structured into three phases, which are described below.
For every phase, the associated research premise,
methodology, and expected results are presented, where
applicable. The first phase, P1, is completed and was
concerned with problem definition, use case development,
and framework definition. The second phase, P2, involves
the experimental study using real world data of the
effectiveness of the suggested framework. The guiding
questions for this phase are: How can the proposed
framework be used with new permission and entitlement
models used at ongoing digital transformation projects?
What are the performance characteristics in the presence of
cloud entities such as authorization servers, resource
servers and microservices? What are the performance
characteristics of an UMA or OAuth2-only architecture as
compared to a mixed UMA or OAuth2 and ABAC
architecture? These questions will be answered by
simulating permission and entitlement models collected
during field surveys. The third phase and final phase, P3, is
concerned with analysis and presentation of the simulation
results, and the overall evaluation of the framework in digital

transformation projects. The guiding questions are: How
can the results be normalized and presented to the
practitioners so they may be able to use the framework
effectively? To answer these questions, the simulations will
be shared with practitioners, such as security architects and
developers. Inputs from these groups will be used to create
permission and entitlement examples for documentation
aimed at helping increase adoption.

8 CONCLUSION
Current JSON and HTTP based distributed authorization
architectures are plagued by least privilege violations. The
UMA 2.0 specification addresses party-to-party sharing but
introduces chattiness between resource servers and the
authorization server. In addition, industry practitioners are
solving the identity propagation problem using heavy claim
stuffing inside JWTs that affects runtime performance at
resource starved APIs and microservices. Decentralized
management of permissions is the way to go to avoid
managing millions of permissions and 100s of thousands of
permission sets at the Authorization Server.
Decentralization also prevents the AS from being
bombarded with token issuance, token validation and token
exchange requests by the participating Resource Servers.

This paper presented an alternative framework for using
the existing capabilities of UMA 2.0 and OAuth2 Token
Exchange specifications to solve common API to API
interactions involves heterogeneous services, each with its
own security requirement. I discussed ideas related to
caching nested permissions and policies locally at the token
exchange microservice to promote faster authorization
decision times and eliminate round trips to the Authorization
Servers. However, there is further work required to be done
in terms of collecting data from experiments, modelling
permissions and entitlements, and running field surveys to
gauge the overall effectiveness of the framework and make
it ready for use by the average digital transformation project.

REFERENCES
[1] Maler, E., Ed., “User-Managed Access (UMA) 2.0 Grant for OAuth

2.0 Authorization”, September 4, 2017
https://kantarainitiative.org/confluence/display/uma/Home

[2] Hardt, D., Ed., “The OAuth 2.0 Authorization Framework”, RFC 6749,
DOI 10.17487/RFC6749, October 2012

[3] M. Jones, A. Nadalin, , B. Campbell, Ed., J. Bradley, “IETF OAuth
Token Exchange” Draft 13, OAuth Working Group, April 23, 2018.
https://tinyurl.com/y7ke6nja
https://www.rfc-editor.org/info/rfc6749

[4] Machulak M., Maler E., Catalano D., Moorsel A., “User-Managed
Access to Web Resources”, October 2010. In DIM '10: Proceedings
of the 6th ACM workshop on Digital identity management

6

